Rehabilitation concepts for edentulous patients.

Pre-treatment guidelines and considerations for an improved quality of life
Rehabilitation concepts for edentulous patients

Contents.

<table>
<thead>
<tr>
<th>Introduction</th>
<th>Comprehensive range of treatment solutions from the pioneer of osseointegration 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The edentulous patient – social and functional implications 5</td>
</tr>
<tr>
<td>Planning</td>
<td>Pre-treatment guidelines and considerations:</td>
</tr>
<tr>
<td></td>
<td>– Oral examination of the patient 6</td>
</tr>
<tr>
<td></td>
<td>– Bone resorption pattern 7</td>
</tr>
<tr>
<td></td>
<td>Maxilla:</td>
</tr>
<tr>
<td></td>
<td>– Treatment in the maxilla requires evaluation of available alveolar bone 8</td>
</tr>
<tr>
<td></td>
<td>– Grafting and delayed loading 10</td>
</tr>
<tr>
<td></td>
<td>– Transition line 11</td>
</tr>
<tr>
<td></td>
<td>– Considerations for the placement of 4 versus 6 implants 12</td>
</tr>
<tr>
<td></td>
<td>Mandible:</td>
</tr>
<tr>
<td></td>
<td>– Treatment of the edentulous mandible 13</td>
</tr>
<tr>
<td></td>
<td>3D treatment planning with NobelClinician™ 14</td>
</tr>
<tr>
<td></td>
<td>Guided surgery with NobelGuide® 15</td>
</tr>
<tr>
<td></td>
<td>Loading of implants 16</td>
</tr>
<tr>
<td>Immediate Function</td>
<td>Clinical guideline – Immediate Function with TiUnite® implants 17</td>
</tr>
<tr>
<td>Clinical cases</td>
<td>Mild/moderate bone resorption:</td>
</tr>
<tr>
<td></td>
<td>– Immediate loading for full-arch rehabilitation using NobelClinician™ 20</td>
</tr>
<tr>
<td></td>
<td>– Failing dentition in both arches 22</td>
</tr>
<tr>
<td></td>
<td>Moderate bone resorption:</td>
</tr>
<tr>
<td></td>
<td>– All-on-4® treatment concept with NobelGuide® in maxilla and flap approach in mandible 24</td>
</tr>
<tr>
<td></td>
<td>Moderate/severe bone resorption:</td>
</tr>
<tr>
<td></td>
<td>– A predictable restorative outcome as a result of a pre-treatment evaluation method using NobelClinician™ 26</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comprehensive range of treatment solutions from the pioneer of osseointegration.

In close cooperation with experienced clinicians and opinion leaders, Nobel Biocare has set the standard for integrated solutions for the treatment of edentulous patients and patients with a failing/terminal dentition. Clinicians can choose from a comprehensive range of implant-based fixed and fixed-removable restorations that can be custom designed to meet every patient’s specific needs. Compared to conventional removable dentures, these implant-based solutions provide superior benefits to the patients and help them improve their quality of life.

From the restorative perspective, there is broad flexibility in the final prosthetic design. CAD/CAM designed frameworks, bridges and bars in different materials meet the different patient conditions and needs, enabling clinicians to deliver precision-milled reconstructions with a passive and excellent fit.

This guide on rehabilitation concepts for edentulous patients has been developed together with a group of experts to aid clinicians in their selection of the appropriate treatment for their patients based on the individual clinical parameters.

All treatment concepts shown in this guide are supported by scientific evidence. For more information on Quality of Life studies, scientific evidence and other related publications, please refer to page 28.
The edentulous patient – social and functional implications.

The use of dental implants to improve patients’ quality of life has been documented in a multitude of publications. The embarrassment caused by dentures moving during social interactions and the constant preoccupation with attempts to stabilize them leaves the majority of patients dissatisfied with this treatment option, as reported in the Quality of Life studies. The use of dental implants improves patients’ speech, esthetics, function and self-esteem. The overall improvement of patients’ social life, self-image, comfort as well as the internal loading of the alveolar bone halting its further resorption, make dental implants a predictable and reliable treatment option over conventional dentures.

A literature review from the National Library of Medicine has described edentulism as a global issue, with estimates for an increasing demand for complete denture prosthesis in the future. Patients with complete edentulism were found to be at higher risk of poor nutrition with higher incidence of coronary artery plaque formation. Chronic residual ridge resorption continues to be the primary intra-oral complication of edentulism. Without the use of dental implants there appears to be few opportunities to reduce bone loss.

Edentulism is a very common handicap and there is a tremendous need for different solutions to treat this group of patients. Complete edentulism is the terminal outcome of multifactorial processes involving biological and patient-related factors. It represents a tremendous global health care burden, and will do so for the foreseeable future. The demand for treatment extends to millions of edentulous people – more than 40 million in the Western world, and 250 million in Asia. Of the total population worldwide, around 6-10% are edentulous.*

Dental implants are well-documented to improve edentulous patients’ quality of life.

Patients with complete edentulism seem to be at risk for multiple systematic disorders if left untreated.

The enormous global demand for edentulous solutions will continue to increase.

Western world

<table>
<thead>
<tr>
<th>Country</th>
<th>Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>44%</td>
</tr>
<tr>
<td>Brazil</td>
<td>14%</td>
</tr>
<tr>
<td>Other</td>
<td>20%</td>
</tr>
<tr>
<td>UK</td>
<td>5%</td>
</tr>
<tr>
<td>Germany</td>
<td>4%</td>
</tr>
<tr>
<td>Canada</td>
<td>6%</td>
</tr>
<tr>
<td>Italy</td>
<td>4%</td>
</tr>
</tbody>
</table>

40 million people are edentulous in the Western world: 64% live in the USA and Brazil.

Asia

<table>
<thead>
<tr>
<th>Country</th>
<th>Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>42%</td>
</tr>
<tr>
<td>India</td>
<td>10%</td>
</tr>
<tr>
<td>Other</td>
<td>8%</td>
</tr>
<tr>
<td>Japan</td>
<td>15%</td>
</tr>
<tr>
<td>Indonesia</td>
<td>10%</td>
</tr>
</tbody>
</table>

250 million people are edentulous in Asia: 67% live in China and India.

Pre-treatment guidelines and considerations – oral examination of the patient.

A thorough pre-treatment evaluation of edentulous patients or patients with failing/terminal dentition is necessary to establish a predictable treatment outcome. The aim of this guide is to assist clinicians in following suggestions in a systematic format and protocol, allowing for the formulation of a comprehensive treatment plan. To begin the evaluation of this group of patients, the following may be taken into consideration:

1 Medical history and chief complaint
Any conditions that might affect the result or influence candidacy as a surgical patient are noted here. Consideration for referral for medical clearance as indicated.

2 Dental history
Ascertain the patient’s expectations, past dental history with dental failure, e.g. periodontal disease, admitted or known habits including clenching and bruxing.

3 Radiographic analysis
Initial radiographic evaluation may be done with the help of a panoramic radiograph (OPG). Upon the discretion of the practitioner, a full mouth periapical series (FMX/FMS), a medical CT scan or a CBCT (cone beam CT) analysis prior to the final decision may be considered.

4 Intra- and extra-oral examination
Evaluate the condition of the remaining teeth documenting caries, occlusion, occlusal discrepancies and migration of teeth. For patients with remaining teeth, the oral examination is always based on periodontal findings and disease status of remaining teeth and soft tissue. This includes a full pocket depth charting with mobility, recession, furcation, bleeding, suppuration and apical lesions, all being noted. For both patients with partial and complete edentulism, the general and specific soft tissue conditions are also documented. The soft tissue examination identifies any palpated area observed in the oral cavity and oropharynx, as well as evaluation of the temporomandibular joint (TMJ). The smile analysis is part of the external facial examination, which includes a neck examination for any palpable lymph nodes.

5 Treatment planning
To begin a systematic pre-treatment evaluation of the patient, the following information during the evaluation may also be helpful:

I) Presence or lack of hard and soft tissue: may aid the practitioner to determine the type of final prosthesis to fabricate.

II) “Transition Line”: determination of a hidden or visible transition line can assist in determining potential esthetic considerations and needs.

III) “Zones/Groups of the Maxilla”: could be helpful for the practitioner in presenting a particular surgical and restorative treatment protocol. For more information regarding the overview of bone resorption patterns and treatment examples, please refer to pages 8–9 in this guide.

IV) The use of 3D software such as NobelClinician is also advisable to evaluate the potential sites for implant placement.

After implant treatment, an individual maintenance program (oral hygiene instructions etc.) for the patient is important to secure a favorable long-term treatment outcome.

The final phase in treatment planning includes an in-depth presentation of all appropriate treatment options. Any discrepancies in the bone or anticipated esthetic or functional limitations to proposed treatment are documented here. Final acceptance to the plan is documented with patient confirmation.
Pre-treatment guidelines and considerations – bone resorption pattern.

It is very important to understand the degree of the existing volume of hard and soft tissue loss, as this degree of atrophy directs the restorative protocol. This means that the remaining alveolar bone directs the surgical protocol, which in turn supports the restorative treatment plan.

How much hard and soft tissue is missing? What is to be replaced? Is there a “Composite Defect”?

Treatment in the maxilla requires evaluation of available alveolar bone.

Group 1

Presence of bone in zones I, II and III

Group 2

Presence of bone in zones I and II

Group 3

Presence of bone in zone I only
Treatment example Group 1

Surgical solution
Axial (straight) implants

Restorative solution
Screw-retained implant bridge

Treatment example Group 2

Surgical solution
All-on-4® treatment concept with tilted implants, bone graft or axial implants with cantilever

Restorative solution
Fixed or fixed-removable solution

Treatment example Group 3

Surgical solution
Tilted implant concept
Brånemark System Zygoma or bone graft

Restorative solution
Fixed or fixed-removable prosthesis

The following publications have been used as support to pre-evaluate important factors as part of the decision making process for the edentulous treatment:

Grafting and delayed loading.

For patients with pneumatized sinus, the grafting of the maxillary sinus floor is certainly an option. The Consensus Report* of 1996 regards maxillary sinus grafting to be a viable procedure with a success rate of 90% or greater. However, immediate loading of these cases is not recommended and the two-stage delayed loading protocol should be followed.

Transition line.

Evaluation of the esthetics of the final prosthesis is made by recognizing the transition line between the prosthesis and the crestal soft tissues of the edentulous ridge. If the transition line is apical to the smile line, an esthetic outcome is predictable. However, if the smile line is apical to the transition line, further evaluation should be made, as the final esthetic outcome may be compromised.
Considerations for the placement of 4 versus 6 implants.

In planning the position and the number of implants to place, it is important to consider the functional and biomechanical properties of the fixed, implant-supported, final prosthesis.

As reported (Silva et al. 2010, Bevilacqua et al. 2010),* the anterior-posterior spread (AP-spread) of the implants is important in limiting or eliminating the posterior cantilever. Tilting the posterior implants (All-on-4® or Zygoma treatment concept) distalizes the implant platform (Krekmanov et al. 2000)** and a larger AP-spread is achieved, reducing the forces on the distal implants (figure 1).

However, during lateral function, increased stress values on the framework are observed, which may be addressed by the addition of two implants in the canine region (figure 2).

In the resorbed maxilla
The resorption pattern of the maxilla (dictated by the black line in figure 3) may not allow for the placement of six implants. Therefore, four implants are placed. By distributing four implants as shown in figure 3, the biomechanical properties of the final prosthesis are addressed by maintaining the AP-spread as well as lending support in lateral excursions.

Treatment of the edentulous mandible.

Although it is possible to have a tooth-only defect in the edentulous mandible, most patients present some degree of bone resorption. The surgical treatment options for this group of patients include axially placed or tilted implants to support a fixed NobelProcera Implant Bridge or a fixed-removable NobelProcera Implant Bar Overdenture. The use of two axial implants to retain an overdenture in the mandible is a valid option that may also be considered.

Treatment examples

Axial implants with a fixed NobelProcera Implant Bridge

Axial and tilted implants with Multi-unit Abutments and a fixed NobelProcera Implant Bridge

Axial implants with a fixed-removable NobelProcera Implant Bar Overdenture

Two axial implants with Locator® Abutments and a removable prosthesis

Locator® is a trademark of Zest Anchors Inc.
One of the key tools needed for treatment planning is the patient’s radiograph. The use of the panoramic radiograph (OPG) as the scout film is indicated for all patients. In cases where further study of the patient’s remaining alveolar bone is needed, a 3D study using the medical CT or CBCT (cone beam CT) scan may be obtained.

For clinicians who choose to relate the proposed implant positions to the patient’s available topography of the bone, the use of the 3D treatment planning software NobelClinician is available. By importing the patients DICOM files into the NobelClinician Software, the practitioner is able to “virtually” plan the implant positions including diameter, length and angulation in a 3D environment.
Guided surgery with NobelGuide®.

The diagnostic and treatment planning options for the clinician are enhanced by the use of the NobelClinician Software.

The software may be used in one or all of its functions:
1. Treatment plan only – NobelClinician Software
2. Designing the surgical template for guided surgery – NobelGuide treatment concept

After 3D treatment planning using the NobelClinician Software, the surgeon may choose to perform guided surgery with NobelGuide. A surgical template may be produced from the planning software, allowing the surgeon to perform a guided flapless or mini-flap surgical procedure.

The expanded use of the NobelGuide concept allows for preoperative fabrication of a provisional all-acrylic bridge/prosthesis, which may be immediately connected after the implants have been placed using the surgical template.

The use of the NobelClinician Software as a 3D treatment planning tool allows for a comprehensive understanding of the bony anatomy as well as the existing vital structures. It also allows for the positioning of the proposed implants onto the patient’s 3D radiograph. The expanded use, the surgical template and the fabrication of an all-acrylic bridge may be an option to consider by the implant treatment team.

Loading of implants.

After successful placement of the implants, immediate, early or delayed loading may be considered. If the two-stage approach is the treatment of choice, the patients utilize their existing dentures during the osseointegration phase. If immediate loading of the newly placed implants is desired, consider the following protocol and rationale:

Immediate loading of implants is facilitated in part by the modification of the implant surface generally referred to as “moderately rough surface”. This modification has led to higher predictability when adopting the immediate load concept. Reports of high cumulative survival rates (up to 100%) have been published using the TiUnite implant surface.

Studies have shown that the bone formation pattern on TiUnite differs from machined implants (Schüpbach et al. 2005, Zechner et al. 2003).* The difference emanates from the strong osseoconductive properties of TiUnite, which results in rapid bone growth along the implant surface and stable anchorage in surrounding bone. This is of particular importance when using the immediate load concept, and for implant treatment in soft bone and sub-optimal healing cases. Due to the formation of new bone directly on the implant surface, the mechanical stability can be maintained at a higher level throughout the healing phase compared with machined implants (Glauser et al. 2001).** Thus, TiUnite implants have allowed for higher predictability when using the immediate load concept, especially in regions with soft bone and sub-optimal healing.

The various criteria for the immediate loading of implants have been reported in the literature. Initial stability of implants is essential for a successful treatment. It is important to highlight that a minimum of 35 Ncm of insertion torque is required if immediate loading is being considered. The implant has to withstand a final tightening torque of minimum 35 Ncm. This can be verified by the use of the surgical manual torque wrench. If the implant does not rotate further, the initial stability of the implant is considered adequate for immediate loading.

Clinical guideline – Immediate Function with TiUnite® implants.

Immediate Function means that patients leave the office with a functional fixed restoration in place directly after implant insertion.

Osseointegration is defined as a direct structural and functional connection between living bone and the surface of a load-carrying implant.* With the Immediate Function protocol, osseointegration has not yet taken place when abutment and provisional restoration are delivered to the patient. The majority of the scientific publications report on Nobel Biocare TiUnite implants that were performed with Immediate Function resulting in successful outcomes. The TiUnite implants maintain and increase the initial stability over time until the osseointegration takes place. Immediate Function with its potential loading is an alternative to later loading protocols for the experienced implant user.

As with any implant surgical or restorative procedure, the treatment outcome is interdependent upon six variables:
- Biocompatibility of materials
- Implant design
- Implant surface
- Surgical technique
- Prosthetic loading conditions
- Individual patient local site conditions

Patient selection
- Compliant patient with good overall health and oral hygiene.
- Good gingival/periodontal/periapical status of adjacent teeth.
- Favorable and stable occlusal relationship to avoid overload to newly placed implant during initial healing.
- No apical disorder/inflammation at the area of the implant site.
- Sufficient bone volume and density to allow placement of adequate numbers and diameters of implants to withstand potential loads.
- Sufficient bone density to maintain stability throughout osseointegration phase.
- No pronounced bruxism.
- Indicated for all regions as long as selection criteria are met.

For patients not meeting these criteria, an unloaded protocol to achieve secondary stability is still appropriate.

As with any procedure, it is the responsibility of the healthcare provider to determine the benefits and risks of Immediate Function compared with delayed loading for a given patient and implant site.

Clinical relevance
- Immediate Function means that patients leave the office with a functional fixed restoration.
- Immediate loading is an alternative to later loading protocols for the experienced implant user.
- Careful patient selection is indicated.

Surgical guidelines
- Adapt implant site preparation technique to bone quality/quantity or use a tapered implant body for high initial implant stability.
- Individual implants should be able to withstand a final tightening torque of minimum 35 Ncm torque without further rotation to confirm stability at time of implant placement.
- If resonance frequency measurement is performed at time of placement – ISQ values > 60 is recommended.
- Regardless of anatomic site or bone quality, implants typically show a drop in the initial stability over the first several weeks before osseointegration takes place. While the maintenance of initial stability is higher with TiUnite than a machined implant surface, this phenomenon can still be expected to occur. Consequently, it is not just the Immediate Function itself but also other prosthetic manipulation of the implant during the healing phase that needs to be considered, e.g. unscrewing of provisional restoration and impression copings.

Restorative guidelines
- A restorative strategy should be developed to ensure minimal handling and tightening of prosthetic components and transference of forces to the implants during the first weeks after placement.
- Special care is recommended when it comes to evaluating load distribution and the elimination of cantilevers and lateral forces. If possible, the occlusal contact should be reduced during the first two to three months after implant placement.
- To obtain optimal esthetics, when practical, the placement of the final abutment at time of implant placement can minimize further disruption of the soft tissue interface.
- A well designed provisional restoration to be used during the maturation of the soft tissue improves the esthetic end results.
- Cantilevers of all types should be avoided in Immediate Function protocol.

Loading protocols – definitions

<table>
<thead>
<tr>
<th>Immediate loading</th>
<th>Early loading</th>
<th>Delayed/Conventional loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 hrs (2 days)</td>
<td>48 hrs</td>
<td>6 weeks (3 months)</td>
</tr>
<tr>
<td>Immediate Function with Nobel Biocare TiUnite implants</td>
<td>12 weeks (6 months)</td>
<td>24 weeks (6 months)</td>
</tr>
</tbody>
</table>

Diagram:
- Immediate loading
- Early loading
- Delayed/Conventional loading (one stage/two stage)
Post-surgery and maintenance program
The follow-up and maintenance is the same as for all implant-based treatments with special attention to the following:
- Antibiotics on the day of surgery and some days post-surgery may be indicated.
- Restrict diet to soft food first weeks after implant placement.
- A soft toothbrush used with a chlorhexident gel twice a day for the first few weeks.
- Follow-up visit at individual intervals with examination of the soft tissue, the construction, and the occlusal condition as for all implant cases.

Clinical relevance
- Follow recommended guidelines for successful outcomes.
- Implant should be able to withstand a tightening torque of minimum 35 Ncm.
- It is recommended to wait for soft tissue maturation prior to proceeding with final restoration.
Mild/moderate bone resorption.

Immediate loading for full-arch rehabilitation using NobelClinician

Patient: 65-year-old male, edentulous in the upper jaw. The dentures were made six years ago. **Chief complaint:** Patient was self-conscious of having a removable upper denture. He complained about the decreased retention and was often worried about the falling out of the denture. The patient’s requirement was to replace the removable upper denture with a fixed restoration. **Overall health:** Healthy and non-smoker. **Oral examination:** Soft tissues within normal limits. Mild to moderate horizontal and vertical bone resorption patterns, with bilateral posterior sinus pneumatization.

Decision: The predecessor of the NobelClinician Software was used for treatment planning, followed by the use of a surgical template for a precise implant placement and a minimally invasive and flapless surgical procedure. Five Bränemark System Mk III Groovy implants and one Nobel-Speedy Shorty implant were placed posteriorly on the left side. As final restoration, a NobelProcera Implant Bridge Titanium with acrylic teeth was used. The final restoration was prepared one day prior to surgery and inserted into the patient’s mouth at the time of implant placement. **Time for total treatment:** 3 months
Digital treatment planning done in 2007 with the predecessor of the NobelClinician Software. The reconstructed 3D image of the maxilla allowed for the visualization of quantity and quality of available bone and for digital treatment planning and positioning of the implants relative to the prosthesis.

The pre-planned surgery was performed with the use of a surgical template to ensure optimal implant placement. The guided sleeves allowed for precise drilling as well as minimal invasiveness of the soft and hard tissues for an optimal surgical outcome.

As final restoration, a NobelProcera Implant Bridge Titanium with acrylic teeth was provided to the patient. It was prepared one day prior to surgery and inserted into the patient's mouth at the time of implant placement.

Post-op panoramic radiograph (OPG) immediately after implant placement shows the successful maxillary treatment with six Nobel Biocare implants and a NobelProcera Implant Bridge.

Post-op picture of the patient shortly after surgery. The NobelProcera Implant Bridge provides the patient with the stability and retention he needs, resulting in an increased quality of life.

Post-op radiographs show a follow-up of more than five years. The successful bone maintenance around the implants and the final restoration can be observed both radiographically and clinically, when compared with the post-op radiograph taken immediately after the treatment.

Dental practitioner: Lesley A. David, DDS, DipOMFS, FRCDC – Canada
In collaboration with John P. Zarb BA, DDS, MSc, FRCDC – Canada
Mild/moderate bone resorption.

Failing dentition in both arches

Patient: This 68-year-old man had recently lost a left side maxillary anterior fixed partial denture due to extensive caries, and had several other teeth with large carious lesions. Chief complaint: His principle concerns were the current esthetic presentation and inability to function. He stated he did not want removable prosthetic appliances as part of any future treatment. Overall health: Good general health with no contraindications to surgery. Oral examination: Unstable occlusion, extensive decay with several unrestorable teeth; periodontal status was fair, with mild to moderate periodontal pocketing and mobility.

Decision: In order to fulfill patient requirements, removal of the remaining teeth and restoration with the All-on-4® treatment concept was advised, thereby avoiding removable prosthetic appliances with immediate loading. As a final restoration, a NobelProcera Implant Bridge Titanium framework with acrylic teeth was used. Time for total treatment: 10 months

Unretracted pre-treatment view shows no visible soft tissue in either arch. Visibility of tissue in the residual ridge is an important aspect of treatment planning, influencing both restorative and surgical approaches.

The presenting occlusion was a deep Class II with posterior collapse and over closure.

The hemi-edentulous arch presented an esthetic and restorative treatment planning challenge if implants are considered unilaterally.
The patient requested and consented to removal of remaining teeth with full-arch implant restorations in both jaws. The All-on-4 concept with NobelActive implants was used.

Because sufficient initial stability was achieved with each implant, provisional restoration of each arch with immediate function was possible on the day of extraction and implant placement. Cantilever stresses were minimized by reducing the cantilever length of the lower arch.

Strong vertical bruxing patterns were evident in the mandibular anterior area.

After six months the final restoration was constructed with a wrap-around design from a precision-milled NobelProcera Implant Bridge. The wrap-around design makes any future modification due to soft tissue movement easier.

Intra-oral view shows the final restorations with first molar occlusion. Acrylic teeth and soft tissue veneering were used to achieve the restorative outcome.

Unretracted smile photograph shows an improved esthetic presentation. Patient has been in successful function for several years and has fulfilled desire to avoid a removable prosthesis in the transition to a fixed implant restoration.

Dental practitioner: Stephen Parel, DDS – United States
Dental technician: Gerry Gaubert – United States
Moderate bone resorption.

All-on-4® treatment concept with NobelGuide in maxilla and flap approach in mandible providing a complete rehabilitation with a minimally invasive solution

Patient: Total edentulous female patient in her early 50’s rehabilitated with upper and lower removable dentures over 15 years ago. **Chief complaint:** Poor retention and stability of the removable dentures with consequent discomfort, insecurity during phonetic and masticatory functions and unsatisfactory esthetics. Her main goal was to obtain a fixed implant-supported rehabilitation. **Overall health:** Healthy patient. **Oral examination:** Moderate bone resorption in the maxilla (at least 5 mm width and 10 mm bone height between the canines in maxilla). Severe bone resorption in the mandible (at least 5 mm width and 8 mm bone height between the mental foramina in mandible). Low smile line.

Decision: Fixed implant-supported bimaxillary rehabilitation with the All-on-4® treatment concept, following the NobelGuide protocol (flapless) in the maxilla and the conventional flap technique with the All-on-4® Guide in the mandible. Four NobelSpeedy Groovy implants were placed in each jaw, followed by immediate placement of provisional fixed all-acrylic bridges providing the patient with Immediate Function solution. In maxilla, a NobelProcera Implant Bridge Titanium framework with individually designed and cemented zirconia crowns with pink acrylic was used. In mandible, a NobelProcera Implant Bridge Titanium framework wrapped in pink acrylic and denture teeth was used. **Time for total treatment:** 5 months
In the maxilla, the radiographic guide (removable prosthesis) was stabilized in the patient’s mouth with the support of the radiographic index and the double scan technique was done previously. Now using the NobelGuide flapless approach, the surgical template was carefully installed to optimally position the four implants, resulting in a minimally invasive treatment.

The dentures were converted into fixed all-acrylic bridges and were delivered with Temporary Copings Multi-unit Titanium. The provisional bridges were retrofitted manually onto their corresponding Multi-unit Abutments in the patient’s mouth immediately after surgery, providing her with Immediate Function.

Post-op occlusal view immediately after placement of the four implants and Multi-unit Abutments. The straight Multi-unit Abutments were placed in the axial anterior implants. The 30° Multi-unit Abutments Non-Engaging were placed using a custom jig for the correct positioning of the angled abutments.

After traditional treatment planning in the mandible, a conventional flap procedure was done. The All-on-4® Guide was positioned to facilitate implant placement. The purpose of this surgical guide is to assist in the correct angulations of the posterior implants between 30° to 45°.

Extra-oral view of the patient showing the final rehabilitation with fixed bridges to fulfill the phonetic, masticatory and esthetic needs of the patient. The base of the provisional and final bridges were designed to be convex or flat and polished for minimum plaque retention and easy cleaning.

Dental practitioner: Paulo Malo, DDS, PhD – Portugal
Dental laboratory: MALO Ceramics – Portugal
Moderate/severe bone resorption.

A predictable restorative outcome as a result of a pre-treatment evaluation method using NobelClinician

Patient: 73-year-old healthy female, unable to function with her existing maxillary distal extension partial dentures. **Overall health:** Unremarkable medical history with exception of Tardive Dyskinesia (involuntary facial muscle movements). **Oral examination:** Remaining anterior maxillary teeth with gross cervical caries and deemed nonrestorable. Displacement of the premaxillary alveolus and remaining maxillary teeth anteriorly due to tongue thrusting habit consistent with Tardive Dyskinesia, resulting in labial incompetence at rest.

Decision: Dentures were not advised due to the excessive tongue thrusting. Removal of the existing maxillary teeth, alveolarplasty to raconteur the premaxilla palatally. Immediate placement of two NobelSpeedy Groovy implants in the anterior and two Brånemark System Zygoma implants in the posterior part of the maxilla, followed by a provisional restoration with Immediate Function protocol. As final restoration, a screw-retained NobelProcera Implant Bridge Titanium framework with acrylic teeth was provided. **Time for total treatment:** 6 months

Extra-oral analysis shows the labial incompetence secondary to the displaced premaxilla. The loss of posterior support secondary to severe resorption further contributed to the involuntary movement of the tongue caused by Tardive Dyskinesia.

Intra-oral analysis shows the buccal displacement of the premaxilla and the anterior maxillary teeth leading to an increased overjet caused by tongue thrusting.

Pre-op panoramic radiograph (OPG) shows the nonrestorable teeth along with the severe bone resorption of the posterior maxilla, making it difficult to place standard implants in that region.
Rehabilitation concepts for edentulous patients // Clinical cases

NobelClinician Software was used for enhanced diagnostics and treatment planning. The immediate placement of the NobelSpeedy Groovy implants in the anterior and the Brånemark System Zygoma implants in the posterior part of the maxilla was based on the restorative needs and surgical requirements.

Post-op panoramic radiograph (OPG) shows the NobelSpeedy Groovy implants in the anterior and Brånemark System Zygoma implants in the posterior part of the maxilla using the graftless approach. A NobelProcera Implant Bridge Titanium framework was used to achieve the desired support.

Post-op analysis shows the correction of the anterior maxillary teeth position and the labial incompetence with the support of the final screw-retained NobelProcera Implant Bridge Titanium framework and acrylic teeth.

Planned virtual positioning of the immediate implants using NobelClinician Software.

Alveolarplasty followed by palatal positioning of the implants as planned in the “virtual surgical planning”. A post-op 3D radiograph demonstrates the final position of the premaxillary implants.

Post-op analysis shows the correction of the anterior maxillary teeth position and the labial incompetence with the support of the final screw-retained NobelProcera Implant Bridge Titanium framework and acrylic teeth.

Dental practitioner: Edmond Bedrossian, DDS, FACP, FACOMS – United States
In collaboration with Lambert Stumpel, DDS – United States
References.
Notes.