Comparisons of Direct Restorative Dental Materials | | TYPES OF DIRECT RESTORATIVE | | GLASS IONOMER | RESIN-IONOMER | |--|---|---|---|---| | FACTORS | AMALĢAM | (DIRECT AND INDIRECT
RESTORATIONS) | CEMENT | CEMENT | | General
Description | Self-hardening mixture in
varying percentages of a
liquid mercury and silver-tin
alloy powder. | Mixture of powdered glass and
plastic resin; self-hardening or
hardened by exposure to blue
light. | Self-hardening mixture of glass and organic acid. | Mixture of glass and resin
polymer and organic acid; self
hardening by exposure to blue
light. | | Principle
Uses | Fillings; sometimes for
replacing portions of broken
teeth. | Fillings, inlays, veneers, partial
and complete crowns; sometimes
for replacing portions of broken
teeth. | Small fillings; cementing metal & porcelain/metal crowns, liners, temporary restorations. | Small fillings; cementing meta
& porcelain/metal crowns, and
liners. | | Resistance to ** Further Decay | High; self-sealing
characteristic helps resist
recurrent decay; but recurrent
decay around amalgam is
difficult to detect in its early
stages. | Moderate; recurrent decay is easily detected in early stages. | Low-Moderate; some
resistance to decay may
be imparted through
fluoride release. | Low-Moderate; some resistance
to decay may be imparted
through fluoride release. | | Estimated Durability (permanent teeth) | Durable | Strong, durable. | Non-stress bearing crown cement. | Non-stress bearing crown cement. | | Relative Amount of Tooth Preserved | Fair; Requires removal of
healthy tooth to be
mechanically retained; No
adhesive bond of amalgam to
the tooth. | Excellent; bonds adhesively to healthy enamel and dentin. | Excellent; bonds
adhesively to healthy
enamel and dentin. | Excellent; bonds adhesively to
healthy enamel and dentin. | | Resistance to
Surface Wear | Low Similar to dental
enamel; brittle metal. | May wear slightly faster than dental enamel. | Poor in stress-bearing
applications. Fair in non-
stress bearing
applications. | Poor in stress-bearing
applications; Good in non-
stress bearing applications. | | Resistance to
Fracture | Amalgam may fracture under
stress; tooth around filling
may fracture before the
amalgam does. | Good resistance to fracture. | Brittle; low resistance to
fracture but not
recommended for stress-
bearing restorations. | Tougher than glass ionomer;
recommended for stress-
bearing restorations in adults. | | Resistance to
Leakage | Good; self-sealing by surface
corrosion; margins may chip
over time, | Good if bonded to enamel; may
show leakage over time when
bonded to dentin;
Does not corrode. | Moderate; tends to crack
over time. | Good; adhesively bonds
to resin, enamel, dentine/ post-
insertion expansion may help
seal the margins. | | Resistance to
Occlusal Stress | High; but lack of adhesion
may weaken the remaining
tooth. | Good to Excellent depending upon product used. | Poor; not recommended
for stress-bearing
restorations. | Moderate; not recommended
to restore biting surfaces of
adults; suitable for short-term
primary teeth restorations. | | Toxicity | Generally safe; occasional
allergic reactions to metal
components. However
amalgams contain mercury.
Mercury in its elemental form
is toxic and as such is listed
on prop 65. | Concerns about trace chemical release are not supported by research studies. Safe; no known toxicity documented. Contains some compounds listed on prop 65. | No known incompatibilities. Safe; no known toxicity documented. | No known incompatibilities. Safe; no known toxicity documented. | | Allergic or Adverse
Reactions | Rare; recommend that dentist evaluate patient to rule out metal allergies. | No documentation for allergic reactions was found. | No documentation for
allergic reactions was
found. Progressive
roughening of the
surface may predispose
to plaque accumulation
and periodontal disease. | No known documented allergic
reactions; Surface may
roughen slightly over time;
predisposing to plaque
accumulation and periodontal
disease if the material contacts
the gingival tissue. | | Susceptibility to
Post-Operative
Sensitivity | Minimal; High thermal conductivity may promote temporary sensitivity to hot and cold; Contact with other metals may cause occasional and transient galvanic response. | Moderate; Material is sensitive to dentist's technique; Material shrinks slightly when hardened, and a poor seal may lead to bacterial leakage, recurrent decay and tooth hypersensitivity. | Low; material seals well
and does not irritate
pulp. | Low; material seals well and does not irritate pulp. | | Esthetics
(Appearance) | Very poor. Not tooth colored:
initially silver-gray, gets
darker, becoming black as it
corrodes. May stain teeth dark
brown or black over time. | Excellent; often indistinguishable From natural tooth: | Good; tooth colored, varies in translucency. | Very good; more translucency than glass ionomer. | |--|---|---|--|---| | Frequency of
Repair
or Replacement | Low; replacement is usually due to fracture of the filling or the surrounding tooth. | Low-Moderate; durable material
hardens rapidly; some composite
materials show more rapid wear
than amalgam. Replacement is
usually due to marginal leakage. | Moderate; Slowly dissolves in mouth; easily dislodged. | Moderate; more resistant to dissolving than glass ionomer, but less than composite resin. | | Relative Costs
to Patient | Low, relatively inexpensive;
actual cost of fillings depends
upon their size. | Moderate; higher than amalgam fillings; actual cost of fillings depends upon their size; veneers & crowns cost more. | Moderate; similar to
composite resin (not
used for veneers and
crowns). | Moderate; similar to composite
resin (not used for veneers and
crowns). | | Number of Visits
Required | Single visit (polishing may require a second visit) | Single visit for fillings;
2+ visits for indirect inlays,
veneers and crowns. | Single visit. | Single visit. | ## Patient Acknowledgment of Receipt of Dental Materials Fact Sheet | L | | _, acknowledge I have | |------------------|--------------------------------|-----------------------| | | patient name | | | received from | | a copy of the | | received from | dentist or dental office name | | | Dental Materials | Fact Sheet dated October 2001. | | | | | | | | 4 Simotura | Date | Patient Signature